Войти
Все секреты компьютера для новичка и профессионала
  • Если ваш заказ не будет доставлен к
  • Заказываем несколько товаров одной посылкой с алиэкспресс Как в алиэкспресс заказать несколько товаров
  • Врачи без границ и другие шпионы
  • Такое коллаж и как. История коллажа. Фотоколлаж. Изготовление при помощи программ
  • Почему не открывается консоль в кс го Почему не открывается консоль в кс го
  • Готовый Zombie Mod сервер Скачать кс 16 зм готовый сервера
  • Радиодетали - обозначения на схеме. Как читать обозначения радиодеталей на схеме? Управляем шаговыми движками и DC моторами, L298 и Raspberry Pi Примеры для Arduino

    Радиодетали - обозначения на схеме. Как читать обозначения радиодеталей на схеме? Управляем шаговыми движками и DC моторами, L298 и Raspberry Pi Примеры для Arduino
    Содержание:

    Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия.

    Резисторы

    К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

    Каждый постоянный резистор обладает двумя основными параметрами - мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

    Существуют и другие способы обозначения резисторов на схемах:

    1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
    2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е - 15 Ом; К15 - 0,15 Ом - 150 Ом; 1К5 - 1,5 кОм; 15К - 15 кОм; М15 - 0,15М - 150 кОм; 1М2 - 1,5 мОм; 15М - 15мОм.
    3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья - множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 - 15 Ом; 151 - 150 Ом; 152 - 1500 Ом; 153 - 15000 Ом; 154 - 120000 Ом.

    Постоянные резисторы

    Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

    Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

    Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

    Переменные резисторы

    Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

    В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

    Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

    На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

    На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

    Соединение резисторов

    В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и .

    При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

    Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы - в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

    Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

    На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

    Полупроводники

    Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.

    Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

    В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.

    Конденсаторы

    Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин - обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

    На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).

    Переменные конденсаторы

    Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

    Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы - термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

    Постоянные конденсаторы

    Широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее - порядковый номер элемента и с небольшим интервалом - числовое обозначение номинальной емкости.

    При использовании в схеме конденсатора с , вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

    Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

    Диоды и стабилитроны

    Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

    Для используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, . Тип того или иного диода указывается возле его позиционного обозначения.

    Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

    Транзисторы

    У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

    Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

    По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

    На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 60 0 , отображающие эмиттер и коллектор.

    Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера - р, а у базы - n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

    Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.

    Буквенные обозначение на схемах радиодеталей

    Основное обозначение

    Наименование элемента

    Дополнительное обозначение

    Вид устройства

    Устройство

    Регулятор тока

    Блок реле

    Устройство

    Преобразователи

    Громкоговоритель

    Датчик тепловой

    Фотоэлемент

    Микрофон

    Звукосниматель

    Конденсаторы

    Батарея конденсаторов силовая

    Блок конденсаторов зарядный

    Интегральные схемы, микросборки

    ИС аналоговая

    ИС цифровая, логический элемент

    Элементы разные

    Теплоэлектронагреватель

    Лампа осветительная

    Разрядники, предохранители, устройства защитные

    Дискретный элемент защиты по току мгновенного действия

    То же, по току инерционного действия

    Предохранитель плавкий

    Разрядник

    Генераторы, источники питания

    Батарея аккумуляторов

    Синхронный компенсатор

    Возбудитель генератора

    Устройства индикационные и сигнальные

    Прибор звуковой сигнализации

    Индикатор

    Прибор световой сигнализации

    Табло сигнальное

    Лампа сигнальная с зеленой линзой

    Лампа сигнальная с красной линзой

    Лампа сигнальная с белой линзой

    Индикаторы ионные и полупроводниковые

    Реле, контакторы, пускатели

    Реле токовое

    Реле указательное

    Реле электротепловое

    Контактор, магнитный пускатель

    Реле времени

    Реле напряжения

    Реле команды включения

    Реле команды отключения

    Реле промежуточное

    Катушки индуктивности, дроссели

    Дроссель люминесцентного освещения

    Измеритель времени действия, часы

    Вольтметр

    Ваттметр

    Выключатели и разъединители силовые

    Выключатель автоматический

    Резисторы

    Терморезистор

    Потенциометр

    Шунт измерительный

    Варистор

    Устройство коммутации в цепях управления, сигнализации и измерительных цепях

    Выключатель или переключатель

    Выключатель кнопочный

    Выключатель автоматический

    Автотрансформаторы

    Трансформатор тока

    Трансформаторы напряжения

    Преобразователи

    Модулятор

    Демодулятор

    Блок питания

    Преобразователь частоты

    Приборы электровакуумные и полупроводниковые

    Диод, стабилитрон

    Прибор электровакуумный

    Транзистор

    Тиристор

    Соединители контактные

    Токосъемник

    Соединитель высокочастотный

    Устройства механические с электромагнитным приводом

    Электромагнит

    Замок электромагнитный

    Электронные трансформаторы приходят на смену громоздким трансформаторам со стальным сердечником. Сам по себе электронный трансформатор, в отличие от классического, представляет собой целое устройство - преобразователь напряжения.

    Применяются такие преобразователи в освещении для питания галогенных ламп на 12 вольт. Если вы ремонтировали люстры с пультом управления , то, наверняка, встречались с ними.

    Вот схема электронного трансформатора JINDEL (модель GET-03 ) с защитой от короткого замыкания.

    Основными силовыми элементами схемы являются n-p-n транзисторы MJE13009 , которые включены по схеме полумост. Они работают в противофазе на частоте 30 - 35 кГц. Через них прокачивается вся мощность, подаваемая в нагрузку - галогенные лампы EL1...EL5. Диоды VD7 и VD8 необходимы для защиты транзисторов V1 и V2 от обратного напряжения. Симметричный динистор (он же диак) необходим для запуска схемы.

    На транзисторе V3 (2N5551 ) и элементах VD6, C9, R9 - R11 реализована схема защиты от короткого замыкания на выходе (short circuit protection ).

    Если в выходной цепи произойдёт короткое замыкание, то возросший ток, протекающий через резистор R8, приведёт к срабатыванию транзистора V3. Транзистор откроется и заблокирует работу динистора DB3, который запускает схему.

    Резистор R11 и электролитический конденсатор С9 предотвращают ложное срабатывание защиты при включении ламп. В момент включения ламп нити холодные, поэтому преобразователь выдаёт в начале пуска значительный ток.

    Для выпрямления сетевого напряжения 220V используется классическая мостовая схема из 1,5-амперных диодов 1N5399 .

    В качестве понижающего трансформатора используется катушка индуктивности L2. Она занимает почти половину пространства на печатной плате преобразователя.

    В силу своего внутреннего устройства, электронный трансформатор не рекомендуется включать без нагрузки. Поэтому, минимальная мощность подключаемой нагрузки составляет 35 - 40 ватт. На корпусе изделия обычно указывается диапазон рабочих мощностей. Например, на корпусе электронного трансформатора, что на первой фотографии указан диапазон выходной мощности: 35 - 120 ватт. Минимальная мощность нагрузки его составляет 35 ватт.

    Галогенные лампы EL1...EL5 (нагрузку) лучше подключать к электронному трансформатору проводами не длиннее 3 метров. Так как через соединительные проводники протекает значительный ток, то длинные провода увеличивают общее сопротивление в цепи. Поэтому лампы, расположенные дальше будут светить тусклее, чем те, которые расположены ближе.

    Также стоит учитывать и то, что сопротивление длинных проводов способствует их нагреву из-за прохождения значительного тока.

    Стоит также отметить, что из-за своей простоты электронные трансформаторы являются источниками высокочастотных помех в сети. Обычно, на входе таких устройств ставится фильтр , который блокирует помехи. Как видим по схеме, в электронных трансформаторах для галогенных ламп нет таких фильтров. А вот в компьютерных блоках питания, которые собираются также по схеме полумоста и с более сложным задающим генератором, такой фильтр, как правило, монтируется.

    В этой статье мы подробно рассмотрим, как работает H-мост, который применяется для управления двигателями постоянного тока с низким напряжением питания. В качестве примера мы будем использовать популярную среди любителей робототехники интегральную микросхему L298. Но сначала от простого к сложному.

    H-мост на механических переключателях

    Направление вращения вала у двигателя постоянного тока зависит от полярности питания. Чтобы изменить эту полярность, без переподключения источника питания, мы можем использовать 4 переключателя, как показано на следующем рисунке.

    Этот тип соединения известен как «H Bridge» (H мост) — по форме схемы, которая похожа на букву «H». Эта схема подключения двигателя имеет очень интересные свойства, которые мы опишем в этой статье.

    Если мы замкнем верхний левый и нижний правый переключатели, то двигатель будет подключен справа на минус, а слева на плюс. В результате этого он будет вращаться в одном направлении (путь прохождения тока указан красными линиями и стрелками).

    Если же мы замкнем верхний правый и нижний левый переключатели, то двигатель будет подключен справа на плюс, а слева на минус. В таком случае двигатель будет вращаться в противоположном направлении.

    Эта схема управления имеет один существенный недостаток: если оба переключателя слева или оба переключателя справа замкнуть одновременно, то произойдет короткое замыкание источника питания, поэтому необходимо избегать такой ситуации.

    Интересным состоянием следующей схемы является то, что используя только два верхних или нижних переключателя, мы отключаем двигатель от питания, в результате чего двигатель останавливается.

    Конечно, H-мост, выполненный исключительно только на переключателях, не очень универсален. Мы привели этот пример только для того, чтобы простым и наглядным образом объяснить принцип работы H-моста.

    Но если мы заменим механические переключатели электронными ключами, то конструкция будет более интересна, поскольку в этом случае электронные ключи могут быть активированы логическими схемами, например, микроконтроллером.

    H-мост на транзисторах

    Для создания электронного H-моста на транзисторах можно использовать транзисторы как NPN, так и PNP типа. Могут быть использованы также и полевые транзисторы. Мы рассмотрим версию с NPN-транзисторами, потому что это решение использовано в микросхеме L298, которую мы увидим позже.

    Транзистор — это электронный компонент, описание работы которого может быть сложным, но применительно к нашему H-мосту его работу легко проанализировать, поскольку он работает только в двух состояниях (отсечка и насыщение).

    Транзистор мы можем представить просто как электронный переключатель, который закрыт, когда на базе (b) 0 В и открыт, когда на базе положительное напряжение.

    Хорошо, мы заменили механические переключатели транзисторными ключами. Теперь нам необходим блок управления, который будет управлять нашими четырьмя транзисторами. Для этого мы будем использовать логические элементы типа «И».

    Логика управления H-мостом

    Логический элемент «И» состоит из интегрированных электронных компонентов и, не зная, что у него внутри, мы можем рассматривать его как своего рода «черный ящик», который имеет два входа и один выход. Таблица истинности показывает нам 4 возможные комбинации сигналов на входах и соответствующий им сигнал на выходе.

    Мы видим, что только тогда, когда на обоих входах положительный сигнал (логическая единица), на выходе появляется логическая единица. Во всех остальных случаях на выходе будет логический ноль (0В).

    В дополнение к данному логическому «И» элементу для нашего H-моста понадобиться другой тип логического элемента «И», у которого мы можем видеть небольшой круг на одном из его входов. Это все тот же логический элемент «И», но с одним инвертирующим (перевернутым) входом. В этом случае таблица истинности будет немного иная.

    Если мы объединим эти два типа «И» элемента, с двумя электронными переключателями, как показано на следующем рисунке, то состояние выхода «Х» может быть в трех вариантах: разомкнутое, положительное или отрицательное. Это будет зависеть от логического состояния двух входов. Этот тип выхода известен как «выход с тремя состояниями» (Three-State Output) который широко используется в цифровой электронике.

    Теперь посмотрим, как будет работать наш пример. Когда вход «ENA» (разрешение) равен 0В, независимо от состояния входа «А», выход «Х» будет разомкнут, поскольку выходы обоих «И» элементов будут равны 0В, и, следовательно, два переключателя также будут разомкнуты.

    Когда мы подаем напряжение на вход ENA, один из двух переключателей будет замкнут в зависимости от сигнала на входе «A»: высокий уровень на входе «A» подключит выход «X» к плюсу, низкий уровень на входе «A» подключит выход «X» к минусу питания.

    Таки образом, мы построили одну из двух ветвей «H» моста. Теперь перейдем к рассмотрению работы полного моста.

    Эксплуатация полного H-моста

    Добавив идентичную схему для второй ветви H-моста, мы получим полный мост, к которому уже можно подключить двигатель.

    Обратите внимание, что вход разрешения (ENA) подключен к обеим ветвям моста, в то время как другие два входа (In1 и In2) независимы. Для наглядности схемы мы не указали защитные сопротивления на базах транзисторов.

    Когда на ENA 0В, то на всех выходах логических элементов также 0В, и поэтому транзисторы закрыты, и двигатель не вращается. Если на вход ENA подать положительный сигнал, а на входах IN1 и IN2 будет 0В, то элементы «B» и «D» будут активированы. В этом состоянии оба входа двигателя будут заземлены, и двигатель также не будет вращаться.

    Если мы подадим на IN1 положительный сигнал, при этом на IN2 будет 0В, то логический элемент «А» активируется вместе с элементом «D», а «B» и «C» будут отключены. В результате этого двигатель получит плюс питания от транзистора, подключенного к элементу «А» и минус от транзистора, подключенного к элементу «D». Двигатель начнет вращается в одном направлении.

    Если же мы сигналы на входах IN1 и IN2 инвертируем (перевернем), то в этом случае логические элементы «C» и «B» активируются, а «A» и «D» будут отключены. Результат этого — двигатель получит плюс питания от транзистора, подключенного к «C» и минус от транзистора, подключенного к «B». Двигатель начнет вращаться в противоположном направлении.

    Если на входах IN1 и IN2 будет положительный сигнал, то активными элементами с соответствующими транзисторами будут «A» и «C», при этом оба вывода мотора будут подключены к плюсу питания.

    H-мост на драйвере L298

    Теперь давайте посмотрим на работу микросхемы L298. На рисунке приведена структурная схема драйвера L298, который имеет два одинаковых H-моста и позволяет управлять двумя двигателями постоянного тока (DC).

    Как мы можем видеть, отрицательная часть мостов напрямую не связана с землей, но доступна на выводе 1 для моста слева и на выводе 15 для моста справа. Добавив очень малое сопротивление (шунт) между этими контактами и землей (RSA и RSB), мы можем измерить ток потребления каждого моста с помощью электронной схемы, которая может измеряет падение напряжения в точках «SENS A» и «SENS B».

    Это может быть полезно для регулирования тока двигателя (с использованием ШИМ) или просто для активации системы защиты, в случае если двигатель застопориться (в этом случае его ток потребления значительно возрастает).

    Защитный диод для индуктивной нагрузки

    Каждый двигатель содержит проволочную обмотку (катушку) и, следовательно, в процессе управления двигателем на его выводах возникает всплеск ЭДС самоиндукции, которая может повредить транзисторы моста.

    Чтобы решить эту проблему, вы можете использовать быстрые диоды типа Shottky или, если наши двигатели не являются особо мощными, просто обычные выпрямительные диоды, например 1N4007. Нужно иметь в виду, что выходы моста в процессе управления двигателем меняют свою полярность, поэтому необходимо использовать четыре диода вместо одного.

    Зачем нужны драйвера двигателей и H-мосты в частности?

    Научившись «дрыгать» пинами и зажигать светодиоды фанаты и любители «Ардуино» хотят чего-то большего, чего-то помощнее, например научиться управлять моторами. Напрямую подключить мотор к микроконтроллеру нельзя, так как типовые токи пинов контроллера составляют несколько миллиампер, а у моторов, даже у игрушечных, счет идет на десятки и сотни миллиампер, вплоть до нескольких ампер. Тоже самое с напряжением: микроконтроллер оперирует напряжением до 5 В, а моторы бывают разного вольтажа.

    В этом обзоре речь идет только о питании коллекторных двигателей постоянного тока, для шаговых двигателей лучше применять специализированные драйвера шаговых двигателей, а для бесколлекторных двигателей имеются свои драйверы, они несовместимы с коллекторными двигателями. Заметим, что в русскоязычной литературе существует некоторая терминологическая путаница – драйверами двигателей называют как «железные» модули, так и фрагменты кода, функции, отвечающие за работу с этими «железными» драйверами. Мы будем иметь в виду под «драйвером» именно модуль, подключаемый с одной стороны к микроконтроллеру (например, к плате Arduino), с другой стороны - к двигателю. Вот таким «преобразователем» логических сигналов контроллера в выходное напряжение для питания двигателя и является «драйвер» двигателя, и, в частности, наш драйвер на L9110S.

    Принцип действия двойного H -моста на основе L 9110 S

    H – мост (читается «аш-мост») – электронный модуль, аналог переключателя, обычно применяется для питания двигателей постоянного тока и шаговых двигателей, хотя для шаговых двигателей обычно применяются более специализированные модули. Обозначается “H”, потому что принципиальная схема H-моста напоминает букву H.

    В «палочке» H включен мотор постоянного тока. Если замкнуть контакты S1 и S4, то мотор будет вращаться в одну сторону, слева будет ноль (S1), справа + напряжения (S4). Если замкнуть контакты S2 и S3, то на правом контакте мотора будет ноль (S3), а на левом + питания (S1), мотор будет вращаться в другую сторону. Мост представляет собой чип L9110 с защитой от сквозных токов: при переключении контакты сначала размыкаются, и только через некоторое время замыкаются другие контакты. На плате стоит два чипа L9110, поэтому одна плата может управлять двумя потребителями постоянного тока: моторами, соленоидами, светодиодами, да чем угодно, или одним двух-обмоточным шаговым двигателем (такие шаговые моторы называются двух-фазными биполярными).

    Элементы платы

    Плата небольшая, элементов немного:

    1. Разъем подключения мотора A
    2. Разъем подключения мотора B
    3. Чип H-моста мотора A
    4. Чип H-моста мотора B
    5. Пины подключения питания и управления

    Подключение

    Мотор А и Мотор В - два выхода для подключения нагрузки, ток не более 0,8 А; В-1А - сигнал «Мотор В вперед»; В-1 B - сигнал «Мотор В реверс»; Земля (GND) - должен быть соединён с землёй микроконтроллера и источника питания двигателя.; Питание (VCC) - питание двигателя (не более 12 В); А-1А - сигнал «Мотор А вперед»; A-1 B - сигнал «Мотор А реверс». Сигналы на пинах управляют напряжением на выходах для подключения моторов:

    Для плавного управления выходным напряжением подаем не просто HIGH, а широтно-импульсно модулированный (PWM) сигнал. Все пины ардуино, отмеченные знаком ~, могут давать ШИМ выход командой analogWrite(n,P), где n-номер пина (в Arduino Nano и Uno это 3,5-6 и 9-11, соответственно). При использовании этих пинов для ШИМ сигнала, необходимо задействовать таймеры 0 (пины 5 и 6), таймер 1 (пины 9 и 10) и таймер 2 (пины 3 и 11). Дело в том, что некоторые библиотечные функции могут использовать те же таймеры – тогда будет конфликт. По большому счету достаточно знать, что пин 3 подключается ко входу A-1B, а пин 5 ко входу A1-A, команда digitalWrite(3,127) подаст 50% напряжения на мотор в прямом направлении.

    Пример использования

    Управление роботом: тележка с фарой (белый светодиод) и фонарем заднего хода (красный светодиод). Программа указана ниже и описывает циклическое движение тележки: вперед-остановка-назад-остановка. Все важные шаги в программе прокомментированы.

    Мотор подключен к клеммам MOTOR A, светодиоды подключены к выходу MOTOR B. Робот едет время TIME вперед, включив белый светодиод. Далее стоит время TIME с горящими наполовину белыми светодиодами. После чего едет назад, включив красные светодиоды. Далее снова стоит время TIME, включив красные, а потом белые светодиоды на половину яркости. // Драйвер двигателя L9110S // by Dr.S // сайт // определяем, какие порты будем использовать для управления мотором и светодиодами #define FORWARD 3 #define BACK 5 #define WHITE_LIGHT 6 #define RED_LIGHT 9 #define LEDOUT 13 #define TIME 5000 unsigned char Forward_Speed = 200; unsigned char Back_Speed = 160; unsigned char White_Light = 210; unsigned char Red_Light = 220; void setup() { // объявляем пины управления мостом как выходы: pinMode(FORWARD, OUTPUT); pinMode(BACK, OUTPUT); pinMode(WHITE_LIGHT, OUTPUT); pinMode(RED_LIGHT, OUTPUT); pinMode(LEDOUT, OUTPUT); } // the loop routine runs over and over again forever: void loop() { // Робот едет вперед в течении времени TIME analogWrite(WHITE_LIGHT, White_Light); // Включить белый светодиод- "фары" analogWrite(RED_LIGHT, 0); analogWrite(FORWARD, Forward_Speed); // Робот пошел вперед analogWrite(BACK, 0); delay(TIME); // и немного подождать // Робот включает "фары" на половину обычной яркости и стоит analogWrite(WHITE_LIGHT, White_Light / 2); // Включить белый светодиод- "фары" как стояночные огни analogWrite(RED_LIGHT, 0); analogWrite(FORWARD, 0); // Робот стоит analogWrite(BACK, 0); delay(TIME); // и немного подождать // Робот включает красные светодиоды "заднего хода" и идет назад analogWrite(WHITE_LIGHT, 0); // Включить белый светодиод- "фары" как стояночные огни analogWrite(RED_LIGHT, Red_Light); analogWrite(FORWARD, 0); analogWrite(BACK, Back_Speed); // Робот идет назад delay(TIME); // и немного подождать // Робот включает попеременно красные и белые светодиоды и стоит analogWrite(WHITE_LIGHT, 0); analogWrite(RED_LIGHT, Red_Light / 2); // Включить красный светодиод как стояночные огни analogWrite(FORWARD, 0); analogWrite(BACK, 0); // Робот стоит delay(TIME / 2); // и немного подождать analogWrite(WHITE_LIGHT, White_Light / 2); // Включить белый светодиод- "фары" как стояночные огни analogWrite(RED_LIGHT, 0); delay(TIME / 2); // и немного подождать }

    Принципиальная схема

    Технические характеристики модуля

    • Два независимых выхода, до 800 мА каждый
    • Максимальная перегрузочная способность 1.2 А
    • Напряжение питания от 2,5 до 12 В
    • Логические уровни совместимы с 3,3 и 5 В логикой
    • Рабочий диапазон 0 °С до 80°С